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Semiclassical methods are used to study the nonlinear interaction of light in vacuum. The study was 
motivated by a desire to investigate the possibility of using recently developed light sources (lasers) to 
demonstrate the existence of these minute nonlinear effects. As is well known, Maxwell's equations can be 
modified by the addition of certain nonlinear terms so that they correctly describe the interaction of low-
energy photons. Using these equations, an expression is derived for the counting rate for photons produced by 
two photons colliding inelastically in the presence of an external, static electric field. A derivation along 
these lines is also given for the well-known scattering cross section in the case of two photons colliding 
elastically to give two photons. 

I. INTRODUCTION 

IT has been known for some time now that quantum 
electrodynamics predicts the existence of a nonlinear 

interaction between electromagnetic fields in vacuum.1"7 

The development within the past several years of optical 
lasers has provided very intense monochromatic light 
sources. One might think that such intense sources 
could be used to observe the extremely small scattering 
of light from light. However, if one estimates the count­
ing rates in a typical experiment in which two laser 
beams are directed at one another and in which the 
scattered light intensity is measured, one finds (with 
available powers) extremely small counting rates. If 
one could cause three intense beams of light to intersect, 
there might be some hope of observing the small non­
linear interaction. The scattering of three radiative 
photons in an initial state to give a single photon in a 
final state is forbidden by phase-space considerations. 
The process could take place, however, if one of the 
initial fields were virtual (co^k). 

The vacuum is, in fact, a polarizable continuum. The 
electrons filling the negative energy Dirac sea can be 
virtually excited by the absorption of radiation to form 
pairs. The pairs in turn annihilate themselves, giving rise 
to a scattering of the absorbed radiation. The cross 
section for this process can be calculated within the 
framework of quantum electrodynamics. The analytic 
expressions for the quantum-mechanical transition am­
plitudes are, in general, algebraically complicated since 
they involve fourth-order processes. Although the gen­
eral expressions have been derived,6*7 they have never 
been evaluated in their entirety. In fact, it is only in 
the case where all the participating photons are real 
(co=k) that the scattering cross section has been ex­
plicitly worked out.7 Only in the high- and low-energy 
limits are the expressions simple. 

The nonlinear interaction between electromagnetic 
1 O. Halpern, Phys. Rev. 44, 855 (1933). 
2 H . Euler, Ann. Physik 26, 398 (1936). 
3 W. Heisenberg and H. Euler, Z. Physik 98, 714 (1936). 
4 V. S. Weisskopf, Kgl. Danske Videnskab. Selskab, Mat.-Fys. 

Medd 16, No. 6 (1936). 
6 A. Achieser, Physik, Z. Sowjetunion 11, 263 (1937). 
6 R. Karplus and M. Neuman, Phys. Rev. 80, 380 (1950). 
7 R. Karplus and M. Neuman, Phys. Rev. 83, 776 (1951). 

fields has a structure which reflects the dynamics of the 
pair field. The range of the nonlinear interaction must 
be of the order of the electron's Compton wavelength. 
For sufficiently low energies, i.e., energies such that 
h<#<&nc2 (w=frequency of the incident light), the radia­
tion cannot "see" the structure of the interaction. The 
sole effect of the pair field in the low-energy limit is to 
produce a nonlinear point interaction of a certain 
strength between fields. The earliest papers in this field 
(see, for example, reference 5) showed that this inter­
action can be grafted onto the linear classical theory of 
light, (Maxwell's equations) by adding to the classical 
Maxwell Lagrangian density terms which are quartic 
in the fields. 

We make this low-energy approximation throughout 
this paper. We use it to calculate the counting rate for 
the scattering of light by light in the presence of classical 
static fields. We also calculate the cross section for the 
scattering of light by light in the absence of external 
fields (a result which is well known). The calculations 
involved in this paper are simple compared with the 
corresponding quantum-mechanical calculations. The 
expressions derived are also simple, both mathematically 
and physically. 

Numerical estimates are made of the kind of fields 
and field gradients needed in order to observe these 
extremely small nonlinear effects in the laboratory. 
The transition rates for the kinds of geometries and 
fields considered are still too small to be measured. 

n . THE NONLINEAR MAXWELL EQUATIONS 

The classical Lagrangian for slowly varying fields, 
which incorporates the effects of virtual pairs and is 
correct to terms of order e4, is6 

JLlGir 
f^u+ciiuf^y+^f^pf,^ !#*, (i) 

where Ci= (5/180)(a2/w4), c2= - (14/180) ( a 2 / 0 , a is the 
fine structure constant, and m is the mass of the electron. 
We use naturalized Gaussian cgs units (i.e., h=c=l, so 
a=e2). The quantities /M„ are the usual components of 
the Maxwell field tensor / M ,= dAjdx"— dA „ /d^, where 
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Ap is the four-potential. The tensor indices take on the 
values ju=0, 1, 2, 3, and a repeated index denotes sum­
mation. Variation of the Lagrangian with respect to 
the potentials of the field yields the equations of motion 
of the field. In this case, an extended set of Maxwell's 
equations results: 

VXE=-(dB/d/ ) , 

VXH=dD/d/, 

V-D=0, 

V-B=0, 

(2) 

(3) 

(4) 

(5) 
where 

and 

A = E € ^ = E , + X E u/Ej^Ei+HdEi), (6) 

Hi= L MjB^Bi+X E m/Bj^Bi+HdBi), (7) 

€«= atf+xp^-jpja^+TBiB^sa^+xc,/, (8) 
M.J = ««+X[2 {E?-B*)bij- lEiEf]= 3<,-+W- (9) 

In Eqs. (8) and (9), 6^ is the Kronecker delta, and X 
is a constant: 

X=(l/457r)(e
4/w4). (10) 

Several simple solutions of this system of equations 
can be determined by inspection. First, a single plane 
wave satisfying the classical linear Maxwell's equations 
is a solution. For this plane wave |E | = |J3|, and 
E-B=0, so from Eqs. (6)-(9), D=E, and H=B, and 
hence Eqs. (2)-(5) are satisfied. One expects this result, 
for quantum electrodynamics predicts that a single 
free photon can propagate undisturbed. 

The next simplest solution is a superposition of two 
plane waves having different frequencies and an arbi­
trary relative phase, but propagating in the same direc­
tion. We can write the E and B vectors as 

E=EiCos[«i( / -vr)] 
+E 2 cos [o ) 2 ( / -v r )+^ l (11) 

B=vXEicos[«i ( / -vr ) ] 
+vXE 2 cos[o J 2 ( / -vr)+^]=vXE, (12) 

where v is the unit vector in the direction of propaga­
tion, <p is the arbitrary phase difference, and 
vEi=v-E 2 =0. It is easy to show that E2—£2=0 and 
E-BsO, so that H=B, D=E, and hence Eqs. (2)-(5) 
are satisfied. It is also simple to prove that no other 
combination of two plane waves is a solution of the 
system of Eqs. (2)-(5). In order that the superposition 
of two plane waves be a solution of these equations, it 
is necessary that their propagation vectors be parallel 
(not antiparallel). It is easy to extend these results and 
show that a superposition of w-plane waves having 
arbitrary frequencies and arbitrary relative phases is 
again a solution of the extended Maxwell equations, if 

their propagation vectors are all parallel. Physically, 
this means that no scattering takes place between pho­
tons travelling in the same direction. 

In order to discuss the scattering of waves, it seems 
necessary to resort to an approximate analysis. Equa­
tions (2)-(5) can be rewritten in the form 

V X E = - ( d B / d 0 , (13) 

VXB= dE/d/+47rXJ, (14) 

V-E==4TTXP, (15) 

V-B=0, (16) 
where 

p=-( l /4»)V.6E, (17) 

J = (l/4ir)[(d/d0(*E)-VX5B]. (18) 

In this way of writing the extended Maxwell's equa­
tions, the nonlinear terms have been lumped into two 
source terms which are proportional to the small 
parameter X. We expand the assumed true solution of 
Eqs. (13)-(16) in a power series in X, 

E=Eo+XE /+--- , B=B0+XB /+ (19) 

and attempt to determine this true solution correctly 
to order X. 

It is readily seen that E0 and Bo are solutions of 
(13)—(16) with p=0 and J=0 , that is, they are solutions 
of the sourceless, linear Maxwell's equations. We dis­
cuss the nature of these solutions later. For the moment, 
we assume that they are known. 

The fields E/ and B/ are then solutions of (13)-(16) 
when X=l, p=po=p(E0B,o), and J=J0=J(E0 ,B0). Since 
we are interested in solutions Eo and B0 which are 
periodic in time, we expand E/, B/, p0, and J0 as Fourier 
series in the time and denote the respective Fourier 
coefficients by E/(r,a>), B/(r,«), po(r,w), and Jo(r,o>) 
(the time factor corresponding to the wth term is 
e~i(at). The Fourier coefficients then satisfy the reduced 
wave equations 

(V2+co2)E/(r,o>) = -47r[icoJo(r,aJ)-Vp0(r,w)], (20) 

(V2+o)2)B/(r,co)= - 4TTVX Jo(r,co). (21) 

The solutions of (20) and (21) which are defined over 
all space and correspond to outgoing waves at infinity 
are well known8: 

E/0»=J 

B/(r,»)= f 

where R= |r— r'l 

[iwJo(r',a>) — v p o ( r » ] 

R 

V X J o ( r » 

R 
ei<aRdY, 

e^Hh', (22) 

(23) 

8 W. K. H. Panofsky and M. Phillips, Classical Electricity and 
Magnetism (Addison-Wesley Publishing Company, Inc., Reading, 
Massachusetts, 1955), p. 213. 
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m. THE INITIAL FIELDS 

In order to proceed further we must specify the 
initial fields, Eo and Bo, which produce the source terms. 
We assume that the initial fields are a sum of fields, in 
one case consisting of two incoming fields plus a single 
outgoing field, and in another case consisting of two 
incoming fields plus a static electric field. Our approxi­
mate solution can be interpreted as follows. The initial 
fields polarize the vacuum and generate a current which 
in turn radiates the field E/. The question now is: 
Given the strengths, polarizations, spatial and time 
dispersion of the initial fields, how much power is radi­
ated into the final field? In discussing the scattering of 
light by light in the absence of an external static field, 
two of the initial fields will be chosen to correspond to 
the incoming photons, and the third field will correspond 
to a photon in a specified final state. In discussing the 
scattering of light by light in the presence of an external 
static field, two of the initial fields correspond to in­
coming photons while the third field will be the pre­
scribed static field. We show that in the first case the 
radiated field E/ corresponds to those photons in the 
final state which have not already been specified, while 
in the second case E/ corresponds to all the photons in 
the final state. The power radiated into a given solid 
angle determines the observable counting rate. This 
type of analysis is analogous to the calculation of the 
matrix elements for the scattering of light by light in 
quantum electrodynamics. There one considers a set of 
diagrams of the form shown in Fig. 1. Three of the pho­
tons (within the encircled area) create the current which 
radiates the final photon at the fourth vertex. 

In writing down the initial fields, a certain amount of 
care must be taken. It might be assumed that the initial 
incoming fields should be plane waves in order that they 
correspond to single photons. This would lead to mathe­
matical difficulties which reflect the fact that the as­
sumption is not physical. In any actual scattering ex­
periment, the incoming fields would be in the form of 
collimated beams which interact only over a finite 
volume.9 While the cross sections of such collimated 

\ 

I FIG. 1. Feynman 
' diagram for the scat-

/ tering of two free 
/ photons into two free 

/ photons. 

"For a discussion of this point see L. I. Schiff, Quantum 
Mechanics (McGraw-Hill Book Company, Inc., New York, 1955), 
2nd ed., pp. 101-102. See also N. M. Kroll, Phys. Rev. 127, 1207 
(1962). 

beams are finite, their linear dimensions are very large 
compared with the wavelength of the light, and so we 
assume that it is reasonable to approximate an incoming 
field by a plane wave which is finite over the volume of 
the beam and is zero elsewhere. Furthermore, in the 
case where a third wave is completely specified, it is 
physically reasonable that the wave should also be a 
collimated beam. This is equivalent to letting the initial 
fields be plane waves and taking the region of integra­
tion of the integrals in (22) and (23) to be a compact 
set, the interaction volume Vo. 

We consider for a moment an initial field which is 
an arbitrary finite sum of linearly polarized plane waves. 
Since the initial fields appear nonlinearly in the expres­
sions for the scattered field, we must use real expressions 
for the initial plane waves. We write 

Eo= £ Fjtj c o s ^ - k i - r ] , (24) 

B 0 = E FJVJX e; cos[wy /-k rr] , (25) 

where tj is a unit polarization vector, v,-=k//« is the 
unit propagation vector, vj'tj=0, j = l , 2, • • -, n, and 
Fj is the real amplitude of the jth wave. If we substitute 
(24) and (25) into the expressions (17) and (18) to get 
po and Jo, and, in turn, substitute po and Jo into (20) 
and (21), several different types of source terms ap­
pear. Schematically, J0 and p0 are proportional to the 
cubes of E0 and Bo. In the first place, no terms corre­
sponding to the cube of a single initial field (F/) is 
present due to the structure of 5E and SB. If n>2, 
there are terms which are quadratic in one initial field 
and linear in another (F/FAJ). These source terms give 
a contribution to the scattered field only in the direction 
of one of the initial fields.10 If n>3, terms appear which 
are the product of three different fields (FjFkFi). It 
is easy to show that no other types of terms appear. 

In the following sections we examine in detail the 
scattered field arising from those source terms which 
are the product of three different fields. It should be 
noticed at this point, that had we chosen the initial 
field as the sum of two plane waves, no scattering other 
than forward scattering would have been described. 
This forward scattering can be interpreted as causing 
a change in the dielectric constant of the vacuum as seen 
by each beam. An extensive discussion of this point can 
be found in the paper by Schrodinger10 in which he 
studied the Born-Infeld nonlinear theory of electro-
magnetism. In order to describe the scattering of two 
photons into two photons within the framework of this 
classical theory, it is necessary to prescribe three of the 
four fields. 

10 E. SchrSdinger, Proc. Roy. Soc. Irish Acad. A47, 77 (1942). 
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IV. THE SCATTERING OF LIGHT BY LIGHT IN 
THE ABSENCE OF AN EXTERNAL FIELD 

In this section we calculate the low-energy limit of 
the cross section for the scattering of light by light in 
the absence of an external field. The result has been 
known for a long time,3 but in this classical theory the 
calculations are simple and illustrate the techniques we 
use in the more interesting case of scattering in the 
presence of an external field. 

For our initial fields we choose the sum of three plane 
waves; two of these waves correspond to the two in-
incoming photons, and the third corresponds to an out-

Since the dimensions of VQ are very much larger than 
2TT/O3J, the integral (36) is essentially different from zero 
only when the total wave vector in the exponent is 
equal to zero. Therefore, 

I(±, =fc, db)= Vo8(±ki±k2±kzA±a)1±a)2±a>z)v)} (37) 

where the 5 function in (37) is a Kronecker delta. 
Now of the eight possible choices of + or — signs 

in the sums in (27) and (28), only two will be of interest 

going photon in a specified final state. As shown in Sec. 
I l l , we need consider only those source terms which are 
products of three different fields. If we write 

3 

and 
3 

B o ^ / ^ X c y c o s ^ , (26) 

where ^=k, - r—uj t , it is easy to show that 

to us. The eight possible combinations correspond to 
the different ways of choosing initial and final states. 
The use of real cosine expressions for the fields precludes 
the possibility of distinguishing between incoming and 
outgoing states. The two terms with all the signs the 
same, W1+W2+W3 and — coi—co2—-0)3, correspond to 
processes in which three photons produce one photon or 
one photon produces three photons. I t is readily seen 
that this is possible only if v=vi=V2=V3, that is, only 

where 

P=(—)(~)(FiF2Fz)^ p ( ± , ± , ± ) e r p p ( ± * i ± * 2 ± * . ) ] , (27) 

J= (— Y - V i / W L J(±, ± , ± ) exp[f(± *i± <P2± **)], (28) 

W/v&v ± 

p ( ± , =fc, db) = A r (dbkiikjdbkj), (29) 

J(db, ± , dz)= (d=w1±w2±aj3)Ai+(±k1±k2dzk3)XA2 , (30) 
3 

Ai= £ [2(e,-e*—vyXei-v*Xe*)ei+7ey (v*Xe*)viX«i], (31) 
j , JM=i 
j jdk 9*1 

3 

A2= L [2(«ycfc—vyXe>-v*Xe*)vzXcz—7ey(vfcX«ib)ei]. (32) 
j 9^k 9*1 

The sums in (27) and (28) are over the eight possible combinations of + and — signs. In deriving (27)-(32), we 
have neglected all terms not involving the product of three different fields. We can now pick out the Fourier 
coefficients of p and J from (27) and (28) and substitute them into (22) and (23). Since we are interested in calcu­
lating the far field, and the region of integration in (22) and (23) is compact, we can make the approximation 

( l / 2 j y - ' * » (1/r) e x p ( & ) / - f « i v r / ) , (33) 

where v = r / r . Using (33), we get for the Fourier components of E/ and B/ 

F1F2F 3 
E/(r, ±a>i±w2±a>3)= [(d=«i=fcw t±«»)J(±, =b, dz)~(±k 1 dzk 2 dbk 3 )p(± , =b, ± ) 1 

32ir 
1 

X_e i(±«i±W2±«8)r /( : ± : > _ t j ± ) > (34) 
r 

F\F%Fz 1 
B,(r, ± « 1 ± C P , ± « » ) = [ (±k 1 = bk 2 ±k 3 )XJ (db , ± , ^ I X - e ^ ^ ^ ' I ^ , ± , ± ) , (35) 

327r r 
where 

/(=fc, ± , d=)= / exp[^±k 1zbk 2±k 3)-r ,~i(±a) 1±co 2±co 3)v-r /]( iV. 
Jv0 

(36) 
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in the case of forward scattering. However, we have 
seen that three plane waves traveling in the same direc­
tion do not scatter, so such processes are excluded.11 

The remaining six terms pair up into three groups, each 
group corresponding to two waves scattering to give 
the third wave plus the scattered field. We consider only 
the terms with cui+co2—o>3 and — o>i—o>2+o>3. These 
correspond to the processes: photons 1 and 2 in with 
momenta ki and k2, and photons 3 and 4 out with mo­
menta k3 and k 4 = (o>iH-o>2—«3)v; a n d photons 1 and 2 
out with momenta — ki and — k2 and photons 3 and 4 
in with momenta — k3 and — k4. These amplitudes are 
indistinguishable experimentally and the two Kronecker 
delta functions merely produce a factor of 2 in the 
amplitude. At this point it is clear that this classical 
theory has yielded the energy and momentum conserva­
tion laws for the processes under consideration. 

We now calculate the time average power, dP, radi­
ated into the solid angle dQ by one of the fields (34)-(35). 
This is done by calculating the radial component of the 
time average Poynting vector and multiplying by r2dQ 
to get the average energy per unit time radiated into 
dQ. Since the two terms in which we are interested give 
identical results, we merely double the result for one of 
them. A standard calculation then gives12 

1 1 
dp= 2v Re(XE/XXB/>2JQ 

4TT2 

4i r \ 32TT / 

(38) 

W^42|vXJ(+ + - ) | 2 . 

In (38), cj4=o?i+aj2—C03, and we have used the Kronecker 
delta in (37) to set ki+k2— k3=o>4v=k4. In order to 
get the scattering cross section from (38), we must 
divide dP, the average energy per unit time radiated 
into dQ, by the average energy flux in beams 1 and 2. 
The latter quantity is just ( l / ^ H J Z ^ + J Z V ) . There­
fore the differential scattering cross section, da/dQ, is 

2X2 / 

Fi2+F2\ 

da 2X 

dQ 32T 
•I F o W | v X J ( + + - ) | 2 . (39) 

In order to see that (39) gives the correct low-energy 
cross section, we transform to the center-of-mass system 
of beams 1 and 2. Then o>i=o>2=o>3=o>4=o>, vi= — V2, 
and v=—V3. We normalize each initial wave so that it 
corresponds to one photon per volume of interaction. 
That is, we set 

8 x J v0 

Vo 
•2 cos2<pjd*r F / , j = 1, 2, 3, (40) 

8TT 

11 The authors are indebted to Dr. W. S. Brown for pointing 
out to them that this process is also excluded in quantum electro­
dynamics because of lack of phase space. 

12 See reference 8, pp. 216-218. 

or Fj= (8TO) /F 0 ) 1 / 2 . If these values are substituted into 
(39), and use is made of (10), we find 

da 

dQ -QB ; 'B' v * x < A ' - v * x A ! ) i ' ( 4 , ) 

where a — e2 is the fine structure constant and ro=e2/m 
is the classical electron radius. By resolving the vectors 
tj into components parallel and perpendicular to 
the plane of scattering, it is easily shown that 
|v3X(Ai—v3XA2)| is equivalent to (90/o>4) MXlx2x3x4> 
where Mx1x2\8A4 is the quantity defined in Eq. (6) in ref­
erence 7 of Karplus and Neuman. I t should be noted that 
in our case only three polarizations can be specified, and 
the fourth one is determined by the other three. Thus, 
our formula has only eight possible polarization states, 
while in the Karplus and Neuman paper there are sixteen 
possible polarization states. However, some of these are 
equal to each other, and others are identically zero, and it 
can be shown that (41) yields all the possible polarization 
states. If we average over initial states and sum over 
final states, (41) yields the well-known formula 

da 139 / a \ 2 

dQ~ (90)2\ 
— = — - i —) ro2(~\ (3+cos20)2. (42) 

V. SCATTERING IN THE PRESENCE OF 
AN EXTERNAL FIELD 

We now use the techniques of Sec. IV to calculate 
the counting rate for the production of photons by the 
inelastic scattering of two photons in the presence of a 
static, spatially inhomogeneous electric field. The basic 
process consists of two photons, 1 and 2, interacting 
once with the external field and producing a single 
photon (see Fig. 2). The energy of the outgoing photon 
is the sum of o>i and 0)2, the energies of the incoming 
photons. However, the momentum is not conserved; 
some momentum is imparted to the static field in the 
process. 

We choose the initial fields as follows: 

Eo= Z Fjtj cos<p3— vU(t), 
y-i 

B 0 = X) FJVJX £/ cos<pj. 
y- i 

(43) 

(44) 

In (43) and (44) the two incoming beams are represented 
by plane waves over the beam, Fjtj cos <pj, where 
<Pj=kj»r—Q)jt. The static field is represented by the 
negative gradient of its potential, and we write 

^ W = E^Wexp( iK-r) , £ / ( K ) * = £ / ( - K ) . (45) 

We assume that the external static field is smoothly 
varying and is very small outside V0. The approximation 
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FIG. 2. Feynman 
diagram for the scat­
tering of two free / ' 
photons in the pres- j 
ence of an external / 
field. / 

/ 

\ / 
/ \ 

I 

is made tha t the potential satisfies periodic boundary 
conditions at the walls of a cube of volume V0. This 
introduces an error of the order 1/KVQ1/S in the Fourier 
transform U(K). Since we are interested in the case 
where K » 1 / Vo1IZ, the error is negligibly small. 

Using (43) and (44) it is again a simple task to com­
pute the source terms. However, in this case we must 
give additional arguments for neglecting certain new 

types of source terms. In the first place, there will be 
terms which are cubic in U(K). I t is easy to see that these 
contribute a static term to E/ and make no contribution 
to B/. This part of the field can, therefore, radiate no 
energy, and we neglect it. In the second place, source 
terms appear which are quadratic in the static field 
and linear in one of the incoming fields. These terms can­
not be argued away on grounds of energy-momentum 
conservation as before. In fact these terms correspond 
to an incoming photon interacting twice with the ex­
ternal field and being scattered by it (Delbrtick scat­
tering).13 The cross section for this process could be 
calculated within this classical theory. The cross section 
so obtained would contain terms involving arbitrarily 
large momenta, and since this theory is valid only at 
low energies, the validity of such results would be doubt­
ful. The elastic process (Delbruck scattering) does not 
physically interfere with the inelastic single scattering 
process.14 They are experimentally distinct. Therefore, 
just as before, we consider only those source terms 
which are linear in each of the three initial fields. 

I t is now easy to show that 

E U{K)YL P(K> ± J ± ) txY>{m*tzhi<pi±.i(p2)y 

where 

and 

J = - ( — ) ( — t U(K)Z J(«, ± , ± ) expCnc-rifVii***), 

P(K, ± , ± ) = ( K i k i i k O - d W , 

J(K, ± , ± ) = (iwiiwjOcjto+GcikiikjOXcjto, 

d(K) = 4[(8i - ic)£2+(£2- i«)e i ]+4[e r E2-(viXd)-(V 2 XE 2 )>+7[K-(viXei)v 2 Xe 2 +»«-(v 2 Xe 2 )v 1 XEi] , 

c2(K) = 4[(ci-ic)v2Xe2+(c2-K)viXei]-7[ei- (v2Xe2)+c2- (v iXe! )>-7 [ i c - (viXOes+ic- (v2Xe2)ei]. 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

The sums in (46) and (47) are over the four possible combinations of + and — signs. In deriving these equations 
we have neglected all terms not involving the product of three different fields. We can now pick out the Fourier 
coefficients of p and J from (46) and (47) and by calculations similar to those of Sec. IV, we get 

E/(r, ± « i ± t t 2 ) = 
16TT 

L L7(K)[±0>i:±:a>2)J(K, ± , ±)~ (K±k1d=k2)p(K, ± , db)] 

X - expp(±«i±W2)f]ro5(Kd=ki=hk2,(±coi±«2)v), (52) 

B/(r , zba>i±a) 2 )=-
iFiF2 1 

E ^(K)(Kdzk!±k2)xJ(K, ± , ±)X-expp(±«idb«2)f]7o*(K=fckidbk2,(±«i±w2)v). 
16w K r 

(53) 

The Kronecker deltas in the sums (52) and (53) pick 3, or photon 3 going into photons 1 and 2. These choices 
out that component of the static field which is needed correspond to t c = z F [ k i + k 2 - - k 3 ] , where k 3 = (wi+w2)v. 

to supply the momentum transfer. wj. M.Jauch and F. Rohrlich, The Theory of Photons and Elec-
There are four possible combinat ions of + or — signs trom (Addison-Wesley Publishing Company, Inc., Reading, 

• / c ^ \ J /r->\ i i . r ^ ^ . . Massachusetts, 1955), p. 379. 
m (52) and (53) and only two of these combina t ions are u The relevant amplitudes f< t amplitudes for Delbruck scattering in a Coulomb 

:omputed in this approximation. F 
4 • i , T ± 4 , -, , ui uus UUIUL see N. Kemmer, Helv. Phys. Acta ] 
tions correspond to photons 1 and 2 going into photon N . Kemmer and G. Ludwig, ibid. 10, 182 (1937). 

of in teres t to US : a>i+a>2 and — coi—w* These combina- field CSLnno^ be computed in this approximation. For a discussion 
of this point see N. Kemmer, Helv. Phys. Acta 10, 112 (1937); 
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To calculate the number of photons radiated per 
unit time from the total interaction volume Fo into the 
solid angle dQy we compute the radial component of the 
time average Poynting vector, multiply by r2dQ, and 
divide by (wi+c^). We set K=ki+k2—t j . I t is 
easily seen that J (K, —, —) = J(—K, + , + ) , and since 
U{—K)=£/(K)*, the two choices + + and make 
identical contributions to the counting rate. The dif­
ferential counting rate, dV (the number of photons scat­
tered per unit time into the solid angle dQ)f is 

X2 / F i F A 2 

dV^—VA ) |J7(K) 2(a>rfco2) 
4 r \ 1 6 V / 

X | V X J ( K , - ,~ - ) | 2 <f t l (54) 

The assumption of a static electric field is valid only 
for a particular reference frame, since after a general 
Lorentz transformation, a static electric field is trans­
formed into a combined static electric and magnetic 
field. With this in mind, we consider the special experi­
ment in which two beams of the same frequency co collide 
head-on in the presence of a static electric field (that is, 
the center-of-mass frame and the laboratory frame are 
the same). Then we have wi=a>2:=ct> and v2=— vi. We 
must still normalize the incident beams. We assume 
that each incident beam contains % photons in an inter­
action volume Vo. Then from Eq. (40), we see that 

F^(S7m3w/VQ)l/2. (55) 

If these values are substituted into (54) and use is made 
of (10), we find that 

dT 8 / a \ 2 1 /oi\7m 
—= - r H » W - - | W K ) | 2 

dQ (45)2\27r/ F0
2 W W 

X | V X [ C I ( V ) + V X C 2 ( V ) ] | 2 . (56) 

If the total number of photons emitted in an experi­
mental arrangement is nf, then » / = ( F / F Q ) % , where V 
is the total volume of the beam. The quantity 

VQU(K)= I exp(iK-t)U(r)d*r (57) 

is finite in the limit as Vo —•» oo, so that the transition 
rate is proportional to 1/F0

2. The ratio of the transition 
rate to the flux is proportional to 1 /FQ and not inde­
pendent of Fo as in the case of the two-body processes 
discussed in Sec. IV. For a fixed number, w3, of scatterers 
in the volume F0 , [ the source of the potential 17 (r)] , 
dr/dQ^nintinz/VoKl/Vo). The ratio of JT/^Q to the 
flux will then depend on nh n2, and w3/F0 , the density 
of scattering centers in F 0 (the collision of two photons 
depends on the existence of a nearby scattering center). 

If the potential U(t) is spherically symmetric, the 
ratio of the total counting rate for two photons scat­
tering in the presence of an external electric field to the 
total counting rate for two photons scattering in a vac­
uum can be written in an interesting way: 

rext/rv a c=A(F0£(K)2 /87rM, (58) 

where A is a dimensionless angular factor of order unity. 
In fact, if we average over initial polarizations and sum 
over final polarizations in calculating r e x t and rvao, 
then A= 1.019. Equation (58) then states that the vac­
uum counting rate is multiplied by a factor which is 
the ratio of the energy stored by the electric field in the 
interaction volume at the wave number K to the energy 
of a single photon. If we assume some typical numbers, 
for example, #i=w2=102 0 , co=l eV, ^i = 10~5 cm2, and 
T= lO - 8 sec, where n is the number of photons in the 
scattering volume produced by a laser which has a 
pulse time T and whose beam is focused on an area A, 
then the flux is n/AT and we find that rvac"~10~13 

photon/sec. If we assume F0=10~2 cc, then in order 
that r ext/rVac>l , it is necessary that E ( K ) > 2 X 1 0 ~ 2 

V/cm. I t appears quite difficult, however, to produce 
fields having a Fourier component at this wavelength 
(OJ=1 eV=>K~105 cm -1) which is much in excess of 
2X10 - 2 V/cm. For example, consider a charged metal 
sphere of radius p such that the value of the field at the 
surface of the sphere is Eo stat-V/cm. If p«(Fo)1 / 3 , 
then E(K) is given quite accurately by 

£ ( * ) = (WFo/F0/c)(sin/cpAp). (5^) 

If p -40~ 2 cm and E 0 = | X 1 0 6 statV/cm, then E(K) 
^4X10~ 4 s ta tV/cm=1.2Xl0~ 1 V/cm. As p increases, 
formula (59) breaks down [£7(r) violates the condition 
that it be small outside Fo] and for order of magnitude 
calculations should be replaced by 

E ( K ) = — f E(r)exp(Ac-r)dV. (60) 
Vjy. 

I t seems that the value lO^1 V/cm cannot be improved 
by much more than an order of magnitude. I t might be 
thought that a high density of atomic nuclei would 
provide a more intense field. However, at these rela­
tively long wavelengths, the light would not "see" the 
charged nuclei, but would "see" only neutral atoms. 
Thus, while ratios of the order of magnitude 
Text/rvac^ 104 are probably obtainable, the nonlinear 
effects would still be unobservable. 

If the calculation were performed for the static mag­
netic field case, the multiplication factor (just from 
dimensional considerations) would be [Fo-B2(K)/8T^CO], 
where B(K) is the magnitude of the Kth Fourier com­
ponent of the field. The angular factor and explicit 
numerical factors would, of course, be different. Experi­
mentally, the question is how to generate the maximum 
energy storage for a given Fourier component of the 
field. 
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